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Fully Connected Neural Networks

F (x) = ŷ

a(l+1) = σ(W (l) · a(l) + b(l))

a(0) = x, ŷ = a(L)

During training, the parameters (W (l) and b(l)) are updated through an
optimization process according to a specific loss function.

No information on the symmetry of the data is taken into
consideration in the architecture.
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Symmetries
Definition
A group is a set G equipped with a binary operation · that satisfies
the following properties:

1 Closure: For all a, b ∈ G, the element a · b is also in G.
2 Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).
3 Identity Element: There exists an element e ∈ G, called the

identity element, such that for all a ∈ G, a · e = e · a = a.
4 Inverse Element: For each a ∈ G, there exists an element

a−1 ∈ G, called the inverse of a, such that a · a−1 = a−1 · a = e.

We can identify symmetries of a certain space as group operation
acting on the domain.
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Symmetries in the data: 2D images

Example (R2 - unbounded or periodic 2D images)
The symmetry group of 2D images is (R2,+), i.e. the group of vertical
and horizontal translations.
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Symmetries in the data: 2D images with
rotations

Example (R2 - unbounded or periodic 2D images)
The symmetry group of 2D images with rotation is R2 ⋊ SO(2).
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Symmetries in the data: graphs
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Example (Graphs)
The symmetry group for graphs with n nodes is the permutation group
Sn. We can indeed list all nodes in a vector V and edges as an n× n
adjacency matrix E. Then a permutation P ∈ Sn acts on the graph
(V,E) as V ′ = PV and E′ = PEP T .

Francesco Ballerin SO(3)-Eq. NN for Vector Fields on Spheres May 8th 2025 5 / 30



Symmetries in the data: Sn

Example (Sphere)
The orientation-preserving symmetry group for Sn is SO(n+ 1).
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Equivariance/Invariance
Let f : A → B be a function and x ∈ A. Let G be the symmetric group
of interest that defines an action on both A and B. Then

Definition
f is said to be left-equivariant if

f(g · x) = g · f(x)

Definition
f is said to be left-invariant is

f(g · x) = f(x)
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Data augmentation: a naive solution to the
problem of symmetries
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Geometric Deep Learning blueprint
The ingredients of a GDL neural network with symmetry group G are:

G-equivariant layer
activation function
coarsening/pooling layer
G-invariant layer
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GDL blueprint in CNNs
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GDL blueprint in Graph Neural Networks

Francesco Ballerin SO(3)-Eq. NN for Vector Fields on Spheres May 8th 2025 11 / 30



Problem description
We are given either scalar fields or vector fields on a 2-sphere, and we
want to predict either a scalar field or a vector field.

In our case we are given wind data as a vector field in terms of V (α, β)
and U(α, β) the north and east components of the wind at latitude α
and longitude β.

Francesco Ballerin SO(3)-Eq. NN for Vector Fields on Spheres May 8th 2025 12 / 30



Wigner D-matrices
L2(SO(3),C) admits a basis given by Wigner D-matrices Dl := (Dl

m,n)
with indices laying in the indexing set

I =

{
(l,m, n) :

l = 0, 1, 2, 3, . . . ,
m, n ∈ [−l, l] ∩ Z

}
.

For (l,m, n) ∈ I , define function Dl
m,n : SO(3) → C by

Dl
m,n(Z(α)Y (β)Z(γ)) = e−imαdlm,n(β)e

−inγ ,

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!·

·
s1∑

s=s0

(−1)m−n+s cos
(
β
2

)2(l−s)+n−m
sin

(
β
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!

with s0 = max{0, n−m}, s1 = min{l −m, l + n}.
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Convolution and Wigner D-matrices
This is an orthonormal basis, so that for any f ∈ L2(SO(3),C),
A ∈ SO(3)

f(A) =
∑

(l,m,n)∈I

f̂ l
m,nD

l
m,n(A)

from which follows that

(f ∗Ψ)(A) =

∫
SO(3)

f(B)Ψ(B−1A)dµ(B)

(f ∗Ψ)(A) =
∑
l∈N

1

2l + 1

l∑
k,m,n=−l

f̂ l
m,kΨ̂

l
k,nD

l
m,n(A)

f̂ ∗Ψ
l

n,m =
1

2l + 1

l∑
k=−l

f̂ l
m,kΨ̂

l
k,n
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Wigner D-matrices and Equivariance

Xn = spanC{Dl
m,n}, L2(SO(3),C) =

∞⊕
n=−∞

Xn

Let K ⊆ SO(3) be the subgroup consisting of matrices of the form
Z(α).

We can define an action ρ̂ of K on SO(3) by
ρ̂(Z(α))A = AZ(−α) = AZ(α)−1

and a representation ρn on C by
ρn(Z(α))z = einαz.

Definition
We say that a function f ∈ L2(SO(3),C) is n-equivariant if

f(ρ̂(Z(α))A) = f(AZ(−α)) = einαf(A) = ρn(Z(α))f(A).
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Theorem
1 Functions in L2(S2,C) are in unique correspondence with

functions on L2(SO(3),C) spanned by X0.
2 Real vector fields on the sphere are in unique correspondence

with functions on L2(SO(3),C) spanned by X1.

Proof of [1].
For complex functions on the sphere one can notice that

Y m
ℓ (θ, ϕ) =

√
2ℓ+ 1

4π
Dℓ∗

m0(ϕ, θ, 0)

where Y m
ℓ are spherical harmonics, and use the fact that these are

an orthogonal basis for L2(S2,C). ■
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Proof of [2].
Consider the principle bundle

SO(n) → SO(n+ 1)
π→ Sn

with π : SO(n+ 1) → Sn as the map π(A) = Aen+1.

Let ξ : Sn → Rn+1 be a vector field A = (A1, . . . , An+1) ∈ SO(n+ 1).
Then π(A) = An+1, while ξ(An+1) will be in the span of A1, . . . , An.
We can then introduce a 1-equivariant map ξ̄ by

ξ̄(A) =

⟨ξ(An+1), A1⟩
...

⟨ξ(An+1), An⟩

 .

[Continues...]

.
■
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Proof of [2] (continuation).
Conversely, if we have a 1-equivariant map ξ̄ : SO(n+ 1) → Rn, then
we can define a vector field by

ξ(π(A)) = A

(
ξ̄(A)
0

)
.

Wigner D-matrices Dl
m,n are n-equivariant functions, and by using

their orthogonality, it follows that f ∈ L2(SO(3),C) is n-equivariant
if and only if f ∈ Xn. ■
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G-equivariant layer in spherical CNNs
For f ∈ Xp introduce weights Ψl for order l ∈ N. An equivariant layer
f 7→ f ∗Ψ can be defined as

f̂ ∗Ψ
l

m,p =
1

2l + 1
f̂ l
m,pΨ̂

l

Advantages:
Output is guaranteed to be
in Xp

Disadvantages:
Low expressivity (weights are only
order-rescalings)
Nonlinearieties need to be
equivariance-preserving

Francesco Ballerin SO(3)-Eq. NN for Vector Fields on Spheres May 8th 2025 19 / 30



Learning functions on a sphere
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The smoothing operator Sq

Introduce the orthogonal projection Sq : X → Xq defined by

Sq(x) =
1

2π

∫ 2π

0
eiqθrZ(−θ)x dθ.

This can be rewritten in the spectral domain as

Ŝqx = x̂lm,nδn,q.
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A more expressive G-equivariant layer

f̂ ∗Ψ
l

m,n =
1

2l + 1

l∑
s=−l

f̂ l
m,sΨ̂

l
s,n

For f ∈ Xp we can restrict Ψ to coefficients Ψ̂l
n

Advantages:
More expressive
Can use any activation
function

Disadvantages:
More weights per layer
One extra dimension in FT
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Coarsening layer

We implement coarsening layer C by limiting the bandwidth of the
function at a certain order L.

C(f) =
∑

(l,m,n)∈IL

f̂ l
m,nD

l
m,n

We need to keep in mind that:
the convolution layer and nonlinearity do not mix frequencies at
different orders;
in practice it cuts high-frequency information.

Therefore coarsening needs to be paired with an activation function in
the spatial domain.
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Our proposed architecture
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ERA5 Dataset
As a proof of concept we use use the ERA5 meteorological dataset.

It contains hourly global measurements of different quantities from
1940 to today.

In our experiments, we use wind data at 10m of elevation and
temperature data at 2m of elevation.

For training and model selection we use a coarser dataset of 52 weekly
datapoints per year for both wind and temperature. Years from 2000
to 2009 (included) have been used for training, while the years 2020
and 2021 have been used for validation and model selection. Years
2022 and 2023 have been used for testing.
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Equivariance

Model
Ground truth Pred. β = 0 Pred. β = π

4 Error

CNN

Ours

0 km/h 28 km/h
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Wind to wind prediction

Figure: Wind to Wind t+24h prediction.
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Temperature to wind estimation

Figure: Temperature to Wind estimation.
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Autoencoder compression

Figure: Autoencoder compression on wind data.
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