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What is Geometric Deep
Learning?



Neural Networks
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Neural Networks
A feedforward neural network computes outputs ŷ from inputs x
through multiple layers of neurons. Each layer applies a linear
transformation followed by a nonlinear activation function. Let W (l)

be the weight matrix, b(l) the bias vector, and σ a non-linear activation
function.
The computation at each layer is:

z(l) = W (l)a(l) + b(l), a(l+1) = σ(z(l))

where a(0) = x. The output of the network after L layers is given by:

ŷ = σ(z(L))

During training, the parameters (weight and bias) are updated through
an optimization process according to a specific loss function.
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Symmetries in the data: images
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Symmetries in the data: sets
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Symmetries in the data: graphs
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Symmetries in the data: graphs
Let (V,E) be a graph with nodes in V and edges in E. Then we can
encode the graph as a vector and adjacency matrix:

V =



1
2
3
4
5
6

 E =



· 6 · · 5 ·
6 · 1 · 7 ·
· 1 · 9 8 9
· · 9 · 4 3
5 7 8 4 · ·
· · 9 3 · ·



V ′ =



2
3
4
5
6
1

 E′ =



· 1 · 7 · 6
1 · 9 8 9 ·
· 9 · 4 3 ·
7 8 4 · · 5
· 9 3 · · ·
6 · · 5 · ·
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Symmetries in the data: manifolds
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Symmetries
Definition
A group is a set G equipped with a binary operation · that satisfies
the following properties:

1 Closure: For all a, b ∈ G, the element a · b is also in G.
2 Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).
3 Identity Element: There exists an element e ∈ G, called the

identity element, such that for all a ∈ G, a · e = e · a = a.
4 Inverse Element: For each a ∈ G, there exists an element

a−1 ∈ G, called the inverse of a, such that a · a−1 = a−1 · a = e.

We can identify symmetries of a certain space as group operation
acting on the domain.
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Symmetries
Example (R2 - unbounded or periodic 2D images)
The symmetry group of 2D images is (R2,+), i.e. the group of vertical
and horizontal translations.

Example (Sets)
The symmetry group for sets with n elements is the permutation
group Sn. A permutation acts on a set with fixed ordering by applying
a permutation of the order.

Example (Graphs)
The symmetry group for graphs with n nodes is the permutation group
Sn. We can indeed list all nodes in a vector V and edges as an n× n
adjacency matrix E. Then a permutation P ∈ Sn acts on the graph
(V,E) as V ′ = PV and E′ = PEP T .
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Data augmentation: a naive solution to the
problem of symmetries
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Geometric Deep Learning

Geometric Deep Learning is a subfield of Deep Learning that focuses
on developing algorithms capable of natively and effectively handling
data with a geometric structure. Geometric Deep Learning aims to
process data with an inherent non-Euclidean or geometric structure by
identifying a symmetry group of interest, guaranteeing that the output
of a GDL neural network is either equivariant or invariant depending
on the problem of interest.
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Geometric Deep Learning
Let f : A → B be a function and x ∈ A. Let G be the symmetric group
of interest that defines an action on both A and B. Then

Definition
f is said to be left-equivariant if

f(g · x) = g · f(x)

Definition
f is said to be left-invariant is

f(g · x) = f(x)
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GDL blueprint
The ingredients of a GDL neural network with symmetry group G are:

G-equivariant layer
nonlinearity
coarsening layer
G-invariant layer (if required)
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GDL blueprint in CNNs
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GDL blueprint in graphs
Graph neural networks:
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Problem of interest



Learning functions on a sphere
Abstract: Spherical CNNs (Cohen T. et al, 2018)
Convolutional Neural Networks (CNNs) have become the method of
choice for learning problems involving 2D planar images. However,
a number of problems of recent interest have created a demand for
models that can analyze spherical images. Examples include omnidi-
rectional vision for drones, robots, and autonomous cars, molecular
regression problems, and global weather and climate modelling. A
naive application of convolutional networks to a planar projection
of the spherical signal is destined to fail, because the space-varying
distortions introduced by such a projection will make translational
weight sharing ineffective.
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Learning functions on a sphere
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Learning functions on a sphere
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Our task: to learn vector fields on a sphere
Learning vector fields on a sphere is not a trivial extension. In our case
we are given wind data as a vector field in terms of V (α, β) and U(α, β)
the north and east components of the wind at latitude α and
longitude β.
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Introduction to the geometry



Orthogonal frame bundle
Let M = Sn embedded in Rn+1. Then we can consider the principal
G-bundle

SO(n) → SO(n+ 1)
π→ Sn.

If we identify SO(n) as the rotation around the north pole
en+1 = (0, . . . , 1), then we can consider π : SO(n+ 1) → Sn simply as
the map π(A) = Aen+1.

The group SO(n) acts on SO(n+ 1) as matrix multiplication by

B̂ =

(
B 0
0 1

)
, B ∈ SO(n).
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Vector fields on the sphere

Theorem
There is a unique correspondence between real vector fields on the
sphere ξ : Sn → Rn and equivariant maps ξ̄ : SO(n+ 1) → Rn such
that ξ̄(AB̂) = B−1ξ̄(A) with

B̂ =

(
B 0
0 1

)
, B ∈ SO(n), A ∈ SO(n).
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Vector fields on the sphere
Proof:
Let ξ : Sn → Rn+1 be a vector field A = (A1, . . . , An+1) ∈ SO(n+ 1).
Then π(A) = An+1, while ξ(An+1) will be in the span of A1, . . . , An.
We can then introduce an equivariant map ξ̄ by

ξ̄(A) =

⟨ξ(An+1), A1⟩
...

⟨ξ(An+1), An⟩


Conversely, if we have an equivariant map ξ̄ : SO(n+ 1) → Rn, then
we can define a vector field by

ξ(π(A)) = A

(
ξ̄(A)
0

)
.

■
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Vector fields on S2 as complex functions
We consider the concrete case of a vector field ξ on the
two-dimensional sphere S2. If we identify R2 with C, then the
corresponding equivariance is given by

ξ̄(A · Z(γ)) = e−iγ ξ̄(A)

since for B = eiγ then B̂ = Z(γ) =

(
eiγ 0
0 1

)
.

For V being the wind component in the north direction and U the wind
component in the east direction we can explicitly write:

ξ̄(Z(α)Y (β)Z(γ)) = −i(U(α, β) + iV (α, β))e−iγ .
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Fourier analysis on the sphere



The group SO(3)
By using Euler’s angles we can describe any element of SO(3) in terms
of rotations around the Z axis and rotations around the Y axis as

Z(α)Y (β)Z(γ) ∈ SO(3)

where α, γ ∈ [0, 2π) and β ∈ [0, π).

The left Haar measure on SO(3), i.e. the measure invariant by group
transformations, is

dµ =
sinβ

8π2
dαdβdγ

and let X := L2 := L2(SO(3),C) be the space of square integrable
functions on SO(3) with respect to dµ.
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Wigner D-matrices
L2 admits a basis given by Wigner D-matrices Dl := (Dl

m,n) with
indices laying in the indexing set

I =

{
(l,m, n) :

l = 0, 1, 2, 3, . . . ,
m, n ∈ [−l, l] ∩ Z

}
.

For (l,m, n) ∈ I , define function Dl
m,n : SO(3) → C by

Dl
m,n(Z(α)Y (β)Z(γ)) = e−imαdlm,n(β)e

−inγ ,

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!·

·
s1∑

s=s0

(−1)m−n+s cos
(
β
2

)2(l−s)+n−m
sin

(
β
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!

with s0 = max{0, n−m}, s1 = min{l −m, l + n}.
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Wigner D-matrices
This is an orthonormal basis, so that for any f ∈ L2, A ∈ SO(3)

f(A) =
∑

(l,m,n)∈I

f̂ l
m,nD

l
m,n(A)

from which follows that

(f ∗Ψ)(A) =

∫
SO(3)

f(B)Ψ(B−1A)dµ(B)

(f ∗Ψ)(A) =
∑
l∈N

1

2l + 1

l∑
k,m,n=−l

f̂ l
m,kΨ̂

l
k,nD

l
m,n(A)

f̂ ∗Ψ
l

n,m =
1

2l + 1

l∑
k=−l

f̂ l
m,kΨ̂

l
k,n
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Wigner D-matrices and spherical harmonics
The sphere S2 is not a group. However, a similar result is obtained by
employing the well-known spherical harmonics Y l

m, i.e. for a function
f ∈ L2(S2,C) with bandwidth b

f =
∑
0≤l≤b

∑
|m|≤l

f̂ l
mY l

m

f̂ l
m =

∫
S2

f(x)Ȳ l
mdµ(x)

In fact
Y l
m = Dl

m,0|S2
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Wigner D-matrices and Equivariance

Xn = spanC{Dl
m,n}

−l≤m≤l
l=n,n+1,n+2,...

Consider the orthogonal decomposition L2 =
⊕∞

n=−∞Xn.

Consider the subgroup K ⊆ SO(3) consisting of the matrices on the
form Z(α).

We can define an action ρ̂ of K on SO(3) by

ρ̂(Z(α))A = AZ(−α) = AZ(α)−1

and a representation ρn on C by

ρn(Z(α))z = einαz.
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Wigner D-matrices and Equivariance
Definition
We say that a function f ∈ L2 is n-equivariant if

f(ρ̂(Z(α))A) = f(AZ(−α)) = einαf(A) = ρn(Z(α))f(A).

Direct computation shows that any Dl
m,n is an n-equivariant function,

and by using their orthogonallity, it follows that f ∈ L2 is
n-equivaraint if and only if f ∈ Xn.

Corollary
Vector fields on the sphere, which are in unique correspondence with
1-equivariant functions, thus in unique correspondence with functions
spanned by X1.

Francesco Ballerin Geometric Deep Learning March 13th 2025 29 / 42



GDL blueprint in our project



GDL blueprint

Recall that the GDL blueprint for a neural network is the following:
G-equivariant layer
nonlinearity
coarsening layer
G-invariant layer (not needed in our case)
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G-equivariant layer in previous work
For f ∈ X1 introduce weights Ψl for order l ∈ N. An equivariant layer
f 7→ f ∗Ψ can be defined as

f̂ ∗Ψ
l

m,1 =
1

2l + 1
f̂ l
m,1Ψ̂

l

Advantages:
The output is guaranteed to be in X1;
Lightweight (few weights);
Gradients of a tensor during training are manageable.

Disadvantages:
Low expressivity (weights are only order-rescalings);
Can only use equivariant nonlinearities.
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The smoothing operator Sq

Introduce the orthogonal projection Sq : X → Xq defined by

Sq(x) =
1

2π

∫ 2π

0
eiqθrZ(−θ)x dθ.

This can be rewritten in the spectral domain as

Ŝqx = x̂lm,nδn,q.
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G-equivariant layer in our work

f̂ ∗Ψ
l

m,n =
1

2l + 1

l∑
s=−l

f̂ l
m,sΨ̂

l
s,n

For f ∈ X1 we can restrict Ψ to coefficients Ψ̂l
n

Advantages:
More expressive
Can use any nonlinearity

Disadvantages:
Gradients are heavier
Slower
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Nonlinearity: the C-ReLU
The most common activation function is ReLU (Rectified Linear Unit)

ReLU(x) = max(0, x)

Complex neural networks deal with complex-valued inputs,
weights, and activation fucntions.
We need an activation function that can handle complex numbers
effectively.

C-ReLU(z) = ReLU(Re(z)) + iReLU(Im(z))

This can then be modified to obtain weighted ReLU, complex leaky
ReLU, ...
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Coarsening layer

We implement coarsening by limiting the bandwidth of the function at
a certain order.

We need to keep in mind that:
group equivariance does not allow for the transfer of information
between degrees (different values of l);
in practice it cuts high-frequency information.

Therefore coarsening needs to be paired with an activation function in
the spatial domain.
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Our proposed architecture
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Results



ERA5 Dataset
We use the ERA5 meteorological dataset.

It contains hourly global measurements of different quantities from
1940 to today.

In our experiments, we use wind data at 10m of elevation and
temperature data at 2m of elevation.

For training and model selection we use a coarser dataset of 52 weekly
datapoints per year for both wind and temperature. Years from 2000
to 2009 (included) have been used for training, while the years 2020
and 2021 have been used for validation and model selection. Years
2022 and 2023 have been used for testing.
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Equivariance

Model
Ground truth Pred. β = 0 Pred. β = π

4 Error

CNN

Ours

0 km/h 28 km/h
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Wind to wind prediction

Figure: Wind to Wind t+24h prediction.
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Temperature to wind estimation

Figure: Temperature to Wind estimation.
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Autoencoder compression

Figure: Autoencoder compression on wind data.
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