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What is Geometric Deep
Learning?



Neural Networks

Francesco Ballerin Geometric Deep Learning April 16th 2024 1 / 41



Neural Networks
A feedforward neural network computes outputs ŷ from inputs x
through multiple layers of neurons. Each layer applies a linear
transformation followed by a nonlinear activation function. Let W (l)

be the weight matrix, b(l) the bias vector, and σ a non-linear activation
function.
The computation at each layer is:

z(l) =W (l)a(l) + b(l), a(l+1) = σ(z(l))

where a(0) = x. The output of the network after L layers is given by:

ŷ = σ(z(L))

During training, the parameters (weight and bias) are updated through
an optimization process according to a specific loss function.
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Neural Networks
Theorem (Universal approximation theorem)
Let σ : R → R be a non-polynomial continuous function. Consider a
feedforward neural network with one hidden layer of M ∈ N neurons.
Then, given any continuous function f : [a, b] → R and any ε > 0,
there exists M and constants wi, vi, bi ∈ R, for i = 1, 2, ...,M , such
that the function

F (x) =

M∑
i=1

wiσ(vix+ bi)

satisfies
sup

x∈[a,b]
|F (x)− f(x)| < ε

In other words, the shallow neural network can approximate any
continuous function f : [a, b] → R to arbitrary precision.
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Symmetries in the data: images
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Symmetries in the data: graphs
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Symmetries in the data: graphs
Let (V,E) be a graph with nodes in V and edges in E. Then we can
encode the graph as a vector and adjacency matrix:

V =



1
2
3
4
5
6

 E =



· 6 · · 5 ·
6 · 1 · 7 ·
· 1 · 9 8 9
· · 9 · 4 3
5 7 8 4 · ·
· · 9 3 · ·



V ′ =



2
3
4
5
6
1

 E′ =



· 1 · 7 · 6
1 · 9 8 9 ·
· 9 · 4 3 ·
7 8 4 · · 5
· 9 3 · · ·
6 · · 5 · ·


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Symmetries in the data: manifolds
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Symmetries
Definition
A group is a set G equipped with a binary operation · that satisfies
the following properties:

1 Closure: For all a, b ∈ G, the element a · b is also in G.
2 Associativity: For all a, b, c ∈ G, (a · b) · c = a · (b · c).
3 Identity Element: There exists an element e ∈ G, called the

identity element, such that for all a ∈ G, a · e = e · a = a.
4 Inverse Element: For each a ∈ G, there exists an element
a−1 ∈ G, called the inverse of a, such that a · a−1 = a−1 · a = e.

We can identify symmetries of a certain space as group operation
acting on the domain.

Francesco Ballerin Geometric Deep Learning April 16th 2024 8 / 41



Symmetries
Example (R2 - unbounded or periodic 2D images)
The symmetry group of 2D images is (R2,+), i.e. the group of vertical
and horizontal translations.

Example (Graphs)
The symmetry group for graphs with n nodes is the permutation group
Sn. We can indeed list all nodes in a vector V and edges as an n× n
adjacency matrix E. Then a permutation P ∈ Sn acts on the graph
(V,E) as V ′ = PV and E′ = PEP T .
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Data augmentation: a naive solution to the
problem of symmetries
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Geometric Deep Learning

Geometric Deep Learning is a subfield of Deep Learning that focuses
on developing algorithms capable of natively and effectively handling
data with a geometric structure. Geometric Deep Learning aims to
process data with an inherent non-Euclidean or geometric structure by
identifying a symmetry group of interest, guaranteeing that the output
of a GDL neural network is either equivariant or invariant depending
on the problem of interest.
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Geometric Deep Learning
Let f : A→ B be a function and x ∈ A. Let G be the symmetric group
of interest that defines an action on both A and B. Then

Definition
f is said to be left-equivariant if

f(g · x) = g · f(x)

Definition
f is said to be left-invariant is

f(g · x) = f(x)
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GDL blueprint
The ingredients of a GDL neural network with symmetry group G are:

G-equivariant layer
nonlinearity
coarsening layer
G-invariant layer (if required)
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GDL blueprint in CNNs
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GDL blueprint in graphs
An example of graph neural network that implements the GDL
blueprint is the graph U-Net (2019).
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Problem of interest



Learning functions on a sphere
Abstract: Spherical CNNs (Cohen T. et al, 2018)
Convolutional Neural Networks (CNNs) have become the method of
choice for learning problems involving 2D planar images. However,
a number of problems of recent interest have created a demand for
models that can analyze spherical images. Examples include omnidi-
rectional vision for drones, robots, and autonomous cars, molecular
regression problems, and global weather and climate modelling. A
naive application of convolutional networks to a planar projection
of the spherical signal is destined to fail, because the space-varying
distortions introduced by such a projection will make translational
weight sharing ineffective.
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Learning functions on a sphere
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Learning functions on a sphere
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Our task: to learn vector fields on a sphere
Learning vector fields on a sphere is not a trivial extension. In our case
we are given wind data as a vector field in terms of V (α, β) and U(α, β)
the north and east components of the wind at latitude α and
longitude β.
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Introduction to the geometry



Principal G-bundles
Let (M, g) be an n-dimensional Riemannian manifold

Definition

For x ∈M a linear isometry u : Rd → TxM is said to be an orthonor-
mal frame at x ∈M . Let O(M)x net the collection of frames at x ∈M
and

O(M) =
⊔
x∈M

O(M)x.

We then have a transitive right action of O(n) defined by
û = u ·A = u ◦A for A ∈ O(n). In particular, if uj = u(ej) are the
standard basis elements of an orthonormal frame, then ûj = uj(Aej).

We can also introduce the projection
π : O(M) −→M

u ∈ O(M)x 7→x
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Principal G-bundles
Let G be a topological group.

Definition
A principal G-bundle is a fiber bundle π : P → M together with a
continuous right action P × G → P s.t G preserves the fibers of P
and acts freely and transitively so that the map

G→ Px

g 7→ yg

is an homeomorphism ∀x ∈M,y ∈ Px.

Then
O(n) → O(M)

π→M,

is a principle G-bundle with G = O(n)
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Principal G-bundles
Let M = Sn embedded in Rn+1. Then we can consider the principal
G-bundle

SO(n) → SO(n+ 1)
π→ Sn.

If we identify SO(n) as the rotation around the north pole
en+1 = (0, . . . , 1), then we can consider π : SO(n+ 1) → Sn simply as
the map π(A) = Aen+1.

The group SO(n) acts on SO(n+ 1) as matrix multiplication by

B̂ =

(
B 0
0 1

)
, B ∈ SO(n).
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Vector fields on the sphere

Theorem
There is a unique correspondence between real vector fields on the
sphere ξ : Sn → Rn and equivariant maps ξ̄ : SO(n+ 1) → Rn such
that ξ̄(AB̂) = B−1ξ̄(A) with

B̂ =

(
B 0
0 1

)
, B ∈ SO(n), A ∈ SO(n).
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Vector fields on the sphere
Proof:
Let ξ : Sn → Rn be a vector field A = (A1, . . . , An+1) ∈ SO(n + 1).
Then π(A) = An+1, while ξ(An+1) will be in the span of A1, . . . , An.
We can then introduce an equivariant map ξ̄ by

ξ̄(A) =

⟨ξ(An+1), A1⟩
...

⟨ξ(An+1), An⟩


Conversely, if we have an equivariant map ξ̄ : SO(n+ 1) → Rn, then
we can define a vector field by

ξ(π(A)) = A

(
ξ̄(A)
0

)
.

■
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Vector fields on S2 as complex functions
We consider the concrete case of a vector field ξ on the
two-dimensional sphere S2. If we identify R2 with C, then the
corresponding equivariance is given by

ξ̄(A · Z(γ)) = e−iγ ξ̄(A)

since for B = eiγ then B̂ = Z(γ) =

(
eiγ 0
0 1

)
.

We can then write for V being the wind component in the north
direction and U the wind component in the east direction

ξ̄(Z(α)Y (β)Z(γ)) = −i(U(α, β) + iV (α, β))e−iγ .
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Change of North Pole
The canonical choice is picking the north pole as ez and meridian line
ex. For any other choice of p and m, there exists a unique A ∈ SO(3)
such that

Aez = p, Aex = m.

For x : S2(⊂ R3) → C let N ′ be the "new" north-pointing vector in R3

N ′(x) =
1√

1− ⟨x, p⟩2
(p− ⟨p, x⟩x),

then N ′(Ax) = AN(x) and

ξ′(x(α, β)) = V (α′, β′)N ′(x(α, β)) + U(α′, β′)N ′(x(α, β))× x(α, β)

with
x(α′, β′) = Ax(α, β).
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Fourier analysis on the sphere



The group SO(3)
By using Euler’s angles we can describe any element of SO(3) in terms
of rotations around the Z axis and rotations around the Y axis as

Z(α)Y (β)Z(γ) ∈ SO(3)

where α, γ ∈ [0, 2π) and β ∈ [0, π).

The left Haar measure on SO(3), i.e. the measure invariant by group
transformations, is

dµ =
sinβ

8π2
dαdβdγ

and let L2 := L2(SO(3),C) be the space of square integrable functions
on SO(3) with respect to dµ.

Francesco Ballerin Geometric Deep Learning April 16th 2024 27 / 41



Wigner D-matrices
L2(SO(3),C) admits a basis given by Wigner D-matrices Dl := (Dl

m,n)
with indices laying in the indexing set

I =

{
(l,m, n) :

l = 0, 1, 2, 3, . . . ,
m, n ∈ [−l, l] ∩ Z

}
.

For (l,m, n) ∈ I , define function Dl
m,n : SO(3) → C by

Dl
m,n(Z(α)Y (β)Z(γ)) = e−imαdlm,n(β)e

−inγ ,

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!·

·
s1∑

s=s0

(−1)m−n+s cos
(
β
2

)2(l−s)+n−m
sin

(
β
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!

with s0 = max{0, n−m}, s1 = min{l −m, l + n}.
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Wigner D-matrices
This is an orthonormal basis, so that for any f ∈ L2(SO(3)), A ∈ SO(3)

f(A) =
∑

(l,m,n)∈I

f̂ lm,nD
l
m,n(A)

from which follows that

(Ψ ∗ f)(A) =
∫
SO(3)

Ψ(B)f(B−1A)dµ(B) =

∫
SO(3)

Ψ(AB)f(B−1)dµ(B).

(Ψ ∗ f)(A) =
∑
l∈N

1

2l + 1

l∑
k,m,n=−l

Ψ̂l
m,kf̂

l
k,nD

l
m,n(A)

Ψ̂ ∗ f
l

n,m =
1

2l + 1

l∑
k=−l

Ψ̂l
m,kf̂

l
k,n
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Wigner D-matrices and spherical harmonics
The sphere S2 is not a group. However, a similar result is obtained by
employing the well-known spherical harmonics Y l

m, i.e. for a function
f ∈ L2(S2,C) with bandwidth b

f =
∑
0≤l≤b

∑
|m|≤l

f̂ lmY
l
m

f̂ lm =

∫
S2

f(x)Ȳ l
mdµ(x)

In fact
Y l
m = Dl

m,0|S2
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Wigner D-matrices and Equivariance

Consider the orthogonal decomposition L2 =
⊕∞

n=−∞ Dn, such that
for a fixed n then Dn is spanned by Dl

m,n, l ≥ n, m ∈ [−l, l] ∩ Z.

Consider the subgroup K ⊆ SO(3) consisting of the matrices on the
form Z(α).

We can define an action ρ̂ of K on SO(3) by

ρ̂(Z(α))A = AZ(−α) = AZ(α)−1

and a representation ρn on C by

ρn(Z(α))z = einαz.
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Wigner D-matrices and Equivariance
Definition
We say that a function f ∈ L2 is n-equivariant if

f(ρ̂(Z(α))A) = f(AZ(−α)) = einαf(A) = ρn(Z(α))f(A).

Direct computation shows that any Dl
m,n is an n-equivariant function,

and by using their orthogonallity, it follows that f ∈ L2 is
n-equivaraint if and only if f ∈ Dn.

Corollary
Vector fields on the sphere, which are in unique correspondence with
1-equivariant functions, thus in unique correspondence with functions
spanned by D1.
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GDL blueprint in our project



GDL blueprint

Recall that the GDL blueprint for a neural network is the following:
G-equivariant layer
nonlinearity
coarsening layer
G-invariant layer (not needed)
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Nonlinearity: the C-ReLU
The usual non-linearity is ReLU (Rectified Linear Unit)

ReLU(x) = max(0, x)

Complex neural networks deal with complex-valued inputs,
weights, and activations.
Need an activation function that can handle complex numbers
effectively.

C-ReLU(z) = ReLU(R(z)) + iReLU(I(z))
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G-equivariant layer

Ψ̂ ∗ f
l

n,m =
1

2l + 1

l∑
k=−l

Ψ̂l
m,kf̂

l
k,n



ψ1
−1,−1 ψ1

−1,0 ψ1
−1,1 0 0 0 · · ·

ψ1
0,−1 ψ1

0,0 ψ1
0,1 0 0 0 · · ·

ψ1
1,−1 ψ1

1,0 ψ1
1,1 0 0 0 · · ·

0 0 0 ψ2
−2,−2 ψ2

−2,−1 ψ2
−2,0 · · ·

0 0 0 ψ2
−1,−2 ψ2

−1,−1 ψ2
−1,0 · · ·

0 0 0 ψ2
0,−2 ψ2

0,−1 ψ2
0,0 · · ·

...
...

...
...

...
... . . .


·



f̂1−1,1

f̂10,1
f̂11,1
f̂2−2,1

f̂2−1,1

f̂20,1
...


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Coarsening layer

In the literature it is suggested to implement a coarsening layer by
reducing the bandwidth of a function from b to b

2 . This is an odd
suggestion because:

Group equivariance does not allow for the transfer of information
between degrees (different values of l)
In practice it cuts high-frequency information

More research and testing is needed to design a sensible coarsening
layer.
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Computational difficulties



SO(3) FFT
Proposition
Let f be a function on SO(3) satisfying

f(A · Z(γ)) = e−inγf(A)

for A ∈ SO(3). Let f̃m(β) bet the Fourier coefficients of the function
f(Z(α)Y (β)) =

∑∞
m=−∞ f̃m(β)eimα. Then

f̂ lm,n =
2l + 1

2

∫ π

0
sin(β)dlm,n(β)f̃−m(β)dβ

where f̃m can be computed from f using the usual notion of one-
dimensional discrete Fourier transform over α.
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SO(3) FFT
Proof:
The result follows by computing the integral

1

2l + 1
f̂ lm,n = ⟨f,Dl

m,n⟩L2

=

∫
γ

∫
β

∫
α

sinβ

8π2
f(Z(α)Y (β)Z(γ)einγ+imαdlm,n(β)dαdβdγ

=

∫ π

0

sinβ

2
dlm,n(β)

(
1

2π

∫ 2π

0
f(Z(α)Y (β))eimαdα

)
dβ

=
1

2

∫ π

0
sin(β)dlm,n(β)f̃−m(β) dβ.

■
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Wigner d-matrices and D-matrices
Computing Wigner d-matrices is computationally expensive and prone
to numerical errors due to the divisions between large factorial values
and floating point precision

Dl
m,n(Z(α)Y (β)Z(γ)) = e−imαdlm,n(β)e

−inγ ,

dlm,n(β) =
√

(l +m)!(l −m)!(l + n)!(l − n)!·

·
s1∑

s=s0

(−1)m−n+s cos
(
β
2

)2(l−s)+n−m
sin

(
β
2

)m−n+2s

(l + n− s)!s!(m− n+ s)!(l −m− s)!
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Wigner d-matrices and D-matrices

iJ l
y :=

[
iJy|V2l+1

]
=

1

2



0 −q−l 0 · · · 0
q−l 0 −q−l+1 · · · 0
0 q−l+1 0
...

... . . .
0 −ql−2 0
ql−2 0 −ql−1

0 0 0 ql−1 0


with qn =

√
(l − n)(l + n+ 1).

Then dl(β) = e−iβJ l
y .
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