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Abstract

Geometric Deep Learning (GDL) is a field that extends traditional
deep learning methods to data with an underlying geometric struc-
ture, such as graphs and manifolds. Neural Networks, and machine
learning models in general, are sensitive to how data is organized and
stored. GDL networks are natively designed with mechanisms
to handle non-Euclidean data and force either equivariance or
invariance, depending on the type of problem. This means that
the result of a prediction does not depend on the symmetries of the
underlining geometrical space: rotating a picture of a cat does not
produce a picture of a dog and changing atlas of a manifold does
not change the manifold. This tackles some of the problems of the
black-box nature of Neural Networks forcing some useful mathe-
matical constraints. Our work explores the ideas of GDL applied to
tensors, with an application to meteorological data prediction.

Symmetries

When dealing with data in a digital setting we have to make a con-
scious choice on how to encode it in a computer. If we take one
image and we flip it or rotate it, the underlying image is the same but
the way the data is stored and processed is different. This difference
in how the data is encoded can affect the prediction of a machine-
learning model. These transformations, which preserve the underlying
data but encode it in different ways, take the name of symmetries.
A naive solution to the problem of symmetries lies within data aug-
mentation: we create multiple versions of a datapoint in order to
consider all (or a subset of) possible ways the same information can
be encoded.

Figure: An example of symmetries applied to a transmission electron micrograph
of L-form Bacillus subtilis, as well as a possible way to use data augmentation to
cover all possible symmetries in the group of rotations by 90°, 180°, and 270°.

Figure: An example of symmetries in a graph in the form of graph isomorphisms.
The four graphs here drawn are the same graph, merely visualized in different
ways.

However, data augmentation is computationally expensive
and does not impose any constraint on the predictive model
itself. Therefore does not guarantee that symmetries of the
same datapoint will produce the same result.

Neural Networks

A Feedforward Neural Network computes outputs ŷ from an input x
through multiple layers of neurons. Each layer applies a linear trans-
formation followed by a nonlinear activation function. Let W (l) be
the weight matrix, b(l) the bias vector, and σ a non-linear activation
function.
The computation at each layer is:

z(l) = W (l)a(l) + b(l), a(l+1) = σ(z(l))

where a(0) = x . The output of the network after L layers is given by:

ŷ = σ(z(L))

During training, the parameters (weight and bias) are updated
through an optimization process according to a specific loss func-
tion L.

Figure: Visualization of a simple Feedforward Neural Network.

Neural Networks have become in modern times extremely effective at
machine learning tasks. However, due to the high number of param-
eters, they are difficult to inspect and understand. Although
the mathematics behind Neural Networks is clear, their ability to make
predictions is the result of an optimization process on whose final re-
sult there is little control on. In particular, they are very susceptible
to symmetries: two datapoints which have the same underlying data
but differ by symmetry are not guaranteed in any way to produce the
same result.

The building blocks of GDL

The building blocks of a GDL Neural Network built upon the symme-
try group G are:

◦ G -equivariant layer
◦ nonlinearity
◦ coarsening layer
◦ G -invariant layer (if required)

Figure: The GDL blueprint applied to graph data. Courtesy of [1].

Our framework

In our project, we aim to predict wind speed and direction at a
global level by building a GDL Neural Network based on SO(3) as
a symmetry group, i.e. the group of 3D rotations. A naive ap-
plication of either Feedforward or Convolutional networks to a planar
projection of the spherical signal is destined to fail. In particular, the
space-varying distortions introduced by such a projection will make
translational weight sharing in a Convolutional Network ineffective.

Figure: Wind magnitude plotted on S2 embedded in R3. Wind data is given as a
vector field in terms of V (α, β) and U(α, β) the north-bound and east-bound
components of the wind at latitude α and longitude β.

The theoretical background can be developed for spheres of any di-
mension n. Let M = Sn embedded in Rn+1. Then we can consider
the principal G -bundle

SO(n) → SO(n + 1)
π→ Sn.

If we identify SO(n) as the rotation around the north pole
en+1 = (0, . . . , 1), then we can consider π : SO(n+ 1) → Sn simply
as the map π(A) = Aen+1.

Proposition

There is a unique correspondence between real vector fields on the
sphere ξ : Sn → Rn and equivariant maps ξ̄ : SO(n + 1) → Rn

such that ξ̄(AB̂) = B−1ξ̄(A) with

B̂ =

(
B 0
0 1

)
, B ∈ SO(n), A ∈ SO(n + 1).

In the specific case of a S2 embedded in R⊯, by using Euler’s angles
we can describe any element of SO(3) in terms of rotations around
the Z axis and rotations around the Y axis as

Z (α)Y (β)Z (γ) ∈ SO(3)

where α, γ ∈ [0, 2π) and β ∈ [0, π). L2(SO(3),C) admits a basis
given by Wigner D-matrices
D l := (D l

m,n) with indices laying in the indexing set

I =

{
(l ,m, n) :

l = 0, 1, 2, 3, . . . ,
m, n ∈ [−l , l ] ∩ Z

}
.

For (l ,m, n) ∈ I , define function D l
m,n : SO(3) → C by
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−inγ,
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The G -equivariant layer takes the form of group convolution in the
spectral domain:

(Ψ ∗ f )(A) =
∑
l∈N
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Consider the orthogonal decomposition L2 =
⊕∞

n=−∞Dn, such that

for a fixed n then Dn is spanned by D l
m,n, l ≥ n, m ∈ [−l , l ] ∩ Z.

We can define an action ρ̂ of K on SO(3) by

ρ̂(Z (α))A = AZ (−α) = AZ (α)−1

and a representation ρn on C by

ρn(Z (α))z = e inαz .

Definition

We say that a function f ∈ L2 is n-equivariant if

f (ρ̂(Z (α))A) = f (AZ (−α)) = e inαf (A) = ρn(Z (α))f (A).

Corollary

Vector fields on the sphere, which are in unique correspondence
with 1-equivariant functions, are then in unique correspondence
with functions spanned by D1.

We can therefore encode vector fields in a natively equivariant fash-
ion by considering functions in L2(SO(3),C) spanned by elements of
D1.

For the nonlinearity, the complex analogue to the well-known ReLU
can be used:

C-ReLU(z) = ReLU(R(z)) + iReLU(I(z)).
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