PDE \& Analysis Seminar

Geometry of the Visual Cortex with
Applications to Image Inpainting and Enhancement

Francesco Ballerin

UNIVERSITY OF BERGEN

Objective: image processing

Figure: Image restoration

Figure: Image enhancement

Curve completion in 2D

Curve completion in 2D

- $\gamma_{0}:[a, b] \cup[c, d] \rightarrow \mathbb{R}^{2}$ a smooth curve that is partially hidden in the interval $t \in(b, c)$.
- We want to find a curve $\gamma:[b, c] \rightarrow \mathbb{R}^{2}$ that completes γ_{0} while minimizing a cost $\mathrm{J}[\gamma]$.
- Constraints on position: $\gamma(b)=\gamma_{0}(b), \gamma(c)=\gamma_{0}(c)$

■ Constraints on orientation:

- $\dot{\gamma}(b) \sim \dot{\gamma}_{0}(b), \dot{\gamma}(c) \sim \dot{\gamma}_{0}(c)$ or
$\square \dot{\gamma}(b) \approx \dot{\gamma}_{0}(b), \dot{\gamma}(c) \approx \dot{\gamma}_{0}(c)$
- $J_{\beta}[\gamma]=\int_{b}^{c} \sqrt{\|\dot{\gamma}(t)\|^{2}+\beta\|\dot{\gamma}(t)\|^{2} K_{\gamma}^{2}(t)} d t$

The visual cortex V1

- The visual cortex V1 is the main region of a mammal's brain for processing vision.
- Composed of simple cells that are sensitive to position and orientation.
■ Simple cells that receive enough stimulus from an external source spike.
- Simple cells that spike stimulate other simple cells with same position but different orientation, and simple cells with same orientation and close position.

The visual cortex V1

Figure: Hypercolumns of the Visual Cortex V1 under a stimulus (red curve)

The visual cortex V1

$$
\operatorname{SE}(2)=\left\{\begin{array}{ccc}
{\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & x \\
\sin \theta & \cos \theta & y \\
0 & 0 & 1
\end{array}\right]} & \begin{array}{c}
x, y \in \mathbb{R}, \\
\theta \in \mathbb{R} / 2 \pi \mathbb{Z}
\end{array}
\end{array}\right\}
$$

Using coordinates (x, y, θ) we see that $S E(2)$ as a space can be identified with the 3-dimensional cylinder $\mathbb{R}^{2} \times S^{1}$.

$$
\begin{gathered}
X_{1}=\cos (\theta) \partial_{x}+\sin (\theta) \partial_{y}, \quad X_{2}=\partial_{\theta}, \quad X_{3}=-\sin (\theta) \partial_{x}+\cos (\theta) \partial_{y} \\
{\left[X_{1}, X_{2}\right]=-X_{3}, \quad\left[X_{2}, X_{3}\right]=X_{1}, \quad\left[X_{1}, X_{3}\right]=0 .}
\end{gathered}
$$

Let $\mathcal{H}=\operatorname{span}\left\{X_{1}, X_{2}\right\}$ be the horizontal distribution, then $\operatorname{SE}(2)$ endowed with \mathcal{H} is a bracket-generating sub-Riemannian manifold

Lift of curve from \mathbb{R}^{2} to $S E(2) / \sim$

Consider $\operatorname{SE}(2) / \sim$, where $(x, y, \theta) \sim(x, y, \theta+\pi)$.
A curve is lifted (by \mathcal{L}) from \mathbb{R}^{2} to $S E(2) / \sim$ by adding a coordinate $\theta \in[0, \pi)$ corresponding to the angle between the orientation of the curve and the horizontal axis $y=0$, measured counterclockwise.

A lifted curve is projected (by Π) to \mathbb{R}^{2} simply by suppressing the third coordinate corresponding to orientation.

Curve completion in $S E(2) / \sim$

Completing a curve in \mathbb{R}^{2} is equivalent to finding a minimizer in $\operatorname{SE}(2) / \sim$, where $(x, y, \theta) \sim(x, y, \theta+\pi)$.

Proposition (Boscain, Charlot, Rossi - 2010)

For all boundary conditions $\gamma_{0}(b), \gamma_{0}(c) \in \mathbb{R}^{2}$ with $\gamma_{0}(b) \neq \gamma_{0}(c)$ and $\dot{\gamma}_{0}(b), \dot{\gamma}_{0}(c) \in \mathbb{R}^{2} \backslash\{0\}$ the cost $J_{\beta}[\gamma]$ admits a minimizer over the set

$$
\mathcal{D}=\left\{\begin{array}{l|l}
\gamma \in C^{2}\left([b, c], \mathbb{R}^{2}\right) & \begin{array}{l}
\|\dot{\gamma}\|^{2}+\|\dot{\gamma}\|^{2} K_{\nu}^{2} \in L^{1}([b, c], \mathbb{R}) \\
\gamma(b)=\gamma_{0}(b), \gamma(c)=\gamma_{0}(c) \\
\dot{\gamma}(b) \approx \dot{\gamma}_{0}(b), \dot{\gamma}(c) \approx \dot{\gamma}_{0}(c)
\end{array}
\end{array}\right\}
$$

Lift of an image

Beyond curve completion: image diffusion

■ Not working with a single curve but with many level curves.
■ Consider all possible admissible paths and model the controls by independent Wiener processes u_{t} and v_{t} obtaining the following SDE:

$$
\left(\begin{array}{l}
d x_{t} \\
d y_{t} \\
d \theta_{t}
\end{array}\right)=\sqrt{2}\left(\begin{array}{c}
\cos \theta_{t} \\
\sin \theta_{t} \\
0
\end{array}\right) \circ d u_{t}+\sqrt{2 \beta}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \circ d v_{t}
$$

■ The diffusion process associated to such SDE is

$$
\frac{\partial \Psi}{\partial t}=\Delta \psi
$$

where

$$
\Delta=X_{1}^{2}+\beta X_{2}^{2}=\left(\cos \theta \frac{\partial}{\partial_{x}}+\sin \theta \frac{\partial}{\partial y}\right)^{2}+\beta \frac{\partial^{2}}{\partial \theta^{2}}
$$

The Citti-Sarti-Boscain algorithm

1 Smooth the image by convolution with a Gaussian kernel (guarantees the image is generically a Morse function)

2 Lift $\mathbb{R}^{2} \rightarrow S E(2)$
3 Solve the Cauchy problem

$$
\begin{gathered}
\Delta_{\beta}=X_{1}^{2}+\beta X_{2}^{2} \\
\left\{\begin{array}{l}
\partial_{t} u=\Delta_{\beta} u \\
u(0, x, y, \theta)=\tilde{I}(x, y, \theta)
\end{array}\right.
\end{gathered}
$$

over $S E(2)$
4 Project $S E(2) \rightarrow \mathbb{R}^{2}$

Some examples

(a) Original image
(b) $T=21$ with $\beta=0.1$

(c) $T=21$ with $\beta=1$

(d) $T=21, \beta=10$

Figure: An image (a) is processed with the Citti-Sarti-Boscain algorithm for different values β (b,c,d)

Problem: no code available

Due to drastic and unfortunate events (allegedly), including but not limited to

- the laptop of the researcher that had the code was stolen

■ the backup code was lost in a terrible fire
no code from the first paper survived to this day.

A codebase for the Boscain et al. was provided by Francesco Rossi: MATLAB implementation.

However some work was needed to replicate the results from the papers.

Public repository


```
    Smport numpy as np
    inport jax. numpy as jnp
    inport matplotlib.pyplot as plt
    inport sys
    1nport sys
    syy, path.appond, 隹, vidiftusion impert utils, transforms,operators, evolution, processing, metrics, examples
In. [2]: }x\mathrm{ -mp.1inspace(0,255,256)
    y=np.11nspace(0,255,25
    X,Y = np.reshgrid(x,y)
    R}=\textrm{CN2,
    R=1-R
    x,Y = np,neshgrid(x,y)
    V=(X-128)**2+(Y-128)**2
    R[V>150e0] -a.7 7, m
    R mh - cvz.Gavssianglur/R,15,151,0.6
In [4]: R_p - R.copy()
    y=np.1inspace(0,255,256)
    *)
    R-ph - cv2.GaussianBlur(R_D, (15,15),0.6)
    utils.imshow(R.h)
```


optim. 50.3 (Jan. 2012), pp. 1309-1336.
[3]: U Boscain et al. "Hypoelliptic diffusion and human vision: A semidiscrete new twist". In: SIAM]. Imaging
Sci. 7.2 (Jan. 2014). pp. 669-695.

Gaussian lift

In the work by Marcelja and Jones and Palmer the similarity in behavior between simple cells and Gabor filters is studied and presented. The output of a signal through the filter decays exponentially as the angle of the original signal differs from θ.
We can model each fiber as a normal distribution around the angle of the level curve, effectively "spreading" the input signal around the orientation of maximum response θ of the simple cells following a Gaussian distribution

$$
\begin{aligned}
& \mathcal{L}_{\sigma}(I)=(I \circ \Pi) \cdot \exp \left(-\frac{\left(X_{1}(I \circ \Pi)\right)^{2}}{2 \sigma^{2}|\nabla I|^{2}}\right)= \\
& =(I \circ \Pi) \cdot \exp \left(-\frac{|\nabla I|^{2}-\left(X_{3}(I \circ \Pi)\right)^{2}}{2 \sigma^{2}|\nabla I|^{2}}\right)
\end{aligned}
$$

Gaussian lift

Theorem

Define an operator $\Pi_{\sigma}: C^{\infty}(\operatorname{SE}(2),(0,1]) \rightarrow C^{\infty}\left(\mathbb{R}^{2},(0,1]\right)$ by

$$
\Pi_{\sigma}(\tilde{l})(x, y)=\exp \left(\frac{1}{4 \sigma}+\frac{1}{2 \pi} \int_{0}^{2 \pi} \ln \tilde{I}(x, y, \theta) d \theta\right) .
$$

Then $\Pi_{\sigma}\left(\mathcal{L}_{\sigma}(I)\right)=I$.

Moreover, the original lift can be considered as a limiting case when $\sigma \rightarrow 0$.

How to deal with blur: unsharp filtering

$$
I \mapsto I+C\left(I-I * G_{\sigma}\right)
$$

(a) Original image
(b) Blurred image with $\sigma=5$

(c) Negative of the blurred image

(d) Sharpened image with $C=1$

Figure: Example of usage of the unsharp filter applied to a low-contrast image of the surface of the moon

Vector fields X_{1}, X_{2}, and X_{3}

(a) Projections to \mathbb{R}^{2} of the integral lines

(b) Integral lines of $X_{1}^{2}+\frac{2}{2}$

(c) Integral lines of $X_{3}^{2}+{ }_{2}^{2}$

Figure: Integral lines of the vector fields $X_{1}^{2}+\beta X_{2}^{2}$ (red) and $X_{3}^{2}+\beta X_{2}^{2}$ (green) for a polynomial curve, at point $\left(\frac{1}{2}, \frac{1}{2}\right)$, varying the coefficient β.

Sketch of the idea

Figure: Sketch of intuition behind WaxOn-WaxOff

Unsharp filtering on $S E(2) / \sim$

The undesired blurring is obtained from the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u=\Delta_{\beta} u, \\
u(0, x, y, \theta)=\tilde{l}(x, y, \theta)
\end{array} \quad \Delta_{\beta}=X_{3}^{2}+\beta X_{2}^{2}\right.
$$

(a) Original image

(b) \mathbb{R}^{2} unsharp filter

(c) $S E(2)$ unsharp filter

Figure: Retinal image (a) sharpened using the classical unsharp filter overn ${ }^{2}$ (b) and using the proposed sharpening method (c).

Retinal image enhancement through unsharp filtering

(a) Original image

(b) $C=0.5$

(c) $C=1$

(d) $C=1.5$

(e) $C=2$

Figure: The original image (a) is processed with diffusion under $\Delta_{\beta}=X_{1}^{2}+\beta X_{2}^{2}$ and sharpended with varying coefficients $C(\mathrm{~b}, \mathrm{c}, \mathrm{d}, \mathrm{e})$

WaxOn-WaxOff

- WaxOn: diffusion problem with $\Delta_{\beta}=X_{1}^{2}+\beta X_{2}^{2}$

■ WaxOff: inverse problem with $\Delta_{\beta}=X_{3}^{2}+\beta X_{2}^{2}$

(a) Original image

(b) $X_{1}^{2}+\beta X_{2}^{2}$ diffusion

(c) 1 cycle of

WaxOn-WaxOff

(d) 3 cycles of WaxOn-WaxOff

Figure: From (a) the CSB algorithm is applied to obtain (b). One iteration of WaxOn-WaxOff for small T_{2} produces (c) while multiple iterations of WaxOn-WaxOff are sequentially applied to produce (d). Total diffusion timejn (b) and (d) is the same.

References

Ballerin and Grong

'Geometry of the visual cortex with applications to image inpainting and enhancement', 2023
arXiv, 2308.07652
Relti and Sarti
'A cortical based model of perceptual completion in the Roto-translation space', 2006
J. Math. Imaging Vis. 24.3, pp. 307-326

婳 Boscain, Charlot, and Rossi
'Existence of planar curves minimizing length and curvature', 2010 Proc. Steklov Inst. Math. 270.1, pp. 43-56

固 Boscain, Duplaix, Gauthier, and Rossi
'Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion', 2012
SIAM j. control optim. 50.3, pp. 1309-1336

sR manifold

Definition

A sub-Riemannian manifold is a triplet (M, \mathcal{H}, g) with M being a connected manifold, $\mathcal{H} \subset T M$ a linear subbundle and $g=\langle\cdot, \cdot\rangle$ a fiber-metric defined on on the subbundle \mathcal{H}.

We call $\mathcal{H} \subset T M$ in this definition the horizontal distribution. A sub-Riemannian manifold can be considered as a limiting case of a Riemannian manifold where the distances of vectors outside of \mathcal{H} approach infinity. Curves $\gamma:[a, b] \rightarrow M$ with a finite length will then need to be a horizontal curve: an absolutely continuous curve satisfying $\dot{\gamma}(t) \in \mathcal{H}_{\gamma(t)}$ for almost every t. For such a curve, we can define its length by

$$
\text { length }(\gamma)=\int_{a}^{b}\langle\dot{\gamma}(t), \dot{\gamma}(t)\rangle^{1 / 2} d t
$$

sR distance

We can then also introduce the corresponding sub-Riemannian distance by

In general, there might not be any curve connecting a point x and y, meaning that the distance above will be infinite. It is therefore typical to require the horizontal bundle sub-Riemannian manifold to be bracket-generating

Bracket generating distribution

$$
\hat{\mathfrak{X}}_{\mathcal{H}}=\operatorname{span}\left\{\left[X_{i_{1}},\left[X_{i_{2}},\left[\cdots\left[X_{l=1}, X_{l}\right]\right] \cdots\right]\right] \mid X_{i_{j}} \in \mathfrak{X}_{\mathcal{H}}, I=1,2,3, \ldots,\right\},
$$

where we interpret the case $I=1$ simply as the vector field $X_{i_{1}}$ itself. We then make the following definition.

Definition

We say that \mathcal{H} is bracket-generating if for every $x \in M$,

$$
T_{x} M=\left\{X(x): X \in \hat{\mathfrak{X}}_{\mathcal{H}}\right\} .
$$

Sub-Laplacian

Consider a second order operator L on a manifold M, which in local coordinates

$$
L=\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{n} b_{j}(x) \frac{\partial}{\partial x_{j}},
$$

with $\left(a_{i j}(x)\right)$ being positive semi-definite with a constant rank k. Such an operator can locally be written as $L=\sum_{=1}^{k} X_{k}^{2}+X_{0}$. Define a sR structure on (\mathcal{H}, g) on M by making X_{1}, \ldots, X_{k} into a local orthonormal basis. If L is required to be symmetric, i.e. $\int_{M} f_{1}\left(L f_{2}\right) d \mu=\int_{M} f_{2}\left(L f_{1}\right) d \mu$ for any pair of smooth functions $f_{1}, f_{2} \in C_{0}^{\infty}(M)$ of compact support, then the symmetric operator is unique with respect to a given volume density $d \mu$. We call this operators the sub-Laplacian of (M, \mathcal{H}, g) and $d \mu$.

Hypoellipticity of Δ_{β}

Theorem

Let L be the sub-Laplacian of a sub-Riemannian structure (M, \mathcal{H}, g) with volume element $d \mu$. Assume that \mathcal{H} is bracket-generating. Then L and the heat operator $\partial_{t}-L$ are hypoelliptic. Furthermore, for the heat-semigroup $e^{t L}$, we have density

$$
e^{t L} f(x)=\int_{M} p_{t}(x, y) f(y) d \mu,
$$

where $p_{t}(x, y)$ is a smooth, strickly positive function that is symmetric in x and y. Furthermore, we have short time asymptotics

$$
\lim _{t \downarrow 0} 2 t \log p_{t}(x, y)=d_{g}(x, y) .
$$

