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Objective: image processing

Figure: Image restoration

Figure: Image enhancement
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Curve completion in 2D
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Curve completion in 2D

γ0 : [a,b] ∪ [c,d ] → R2 a smooth curve that is partially hidden in
the interval t ∈ (b, c).

We want to find a curve γ : [b, c] → R2 that completes γ0 while
minimizing a cost J[γ].

Constraints on position: γ(b) = γ0(b), γ(c) = γ0(c)

Constraints on orientation:
γ̇(b) ∼ γ̇0(b), γ̇(c) ∼ γ̇0(c)
or
γ̇(b) ≈ γ̇0(b), γ̇(c) ≈ γ̇0(c)

Jβ[γ] =
∫ c

b

√
∥γ̇(t)∥2 + β∥γ̇(t)∥2K 2γ (t)dt
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The visual cortex V1
The visual cortex V1 is the main region of a mammal’s brain for
processing vision.
Composed of simple cells that are sensitive to position and
orientation.
Simple cells that receive enough stimulus from an external source
spike.
Simple cells that spike stimulate other simple cells with same
position but different orientation, and simple cells with same
orientation and close position.
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The visual cortex V1

θ

R 2

Figure: Hypercolumns of the Visual Cortex V1 under a stimulus (red curve)
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The visual cortex V1

SE(2) =


cos θ − sin θ x

sin θ cos θ y
0 0 1

 ∣∣∣∣∣∣ x , y ∈ R,
θ ∈ R/2πZ


Using coordinates (x , y , θ) we see that SE(2) as a space can be
identified with the 3-dimensional cylinder R2 × S1.

X1 = cos(θ)∂x +sin(θ)∂y , X2 = ∂θ, X3 = − sin(θ)∂x +cos(θ)∂y

[X1,X2] = −X3, [X2,X3] = X1, [X1,X3] = 0.

Let H = span{X1,X2} be the horizontal distribution, then SE(2)
endowed with H is a bracket-generating sub-Riemannian manifold.
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Lift of curve from R2 to SE(2)/ ∼

Consider SE(2)/ ∼, where (x , y , θ) ∼ (x , y , θ+π).

A curve is lifted (by L) from R2 to SE(2)/ ∼ by adding a coordinate
θ ∈ [0,π) corresponding to the angle between the orientation of the
curve and the horizontal axis y = 0, measured counterclockwise.

A lifted curve is projected (by Π) to R2 simply by suppressing the third
coordinate corresponding to orientation.
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Curve completion in SE(2)/ ∼
Completing a curve in R2 is equivalent to finding a minimizer in
SE(2)/ ∼, where (x , y , θ) ∼ (x , y , θ+π).

Proposition (Boscain, Charlot, Rossi - 2010)

For all boundary conditions γ0(b),γ0(c) ∈ R2 with γ0(b) ̸= γ0(c) and
γ̇0(b), γ̇0(c) ∈ R2\{0} the cost Jβ[γ] admits a minimizer over the set

D =

{
γ ∈ C2([b, c],R2)

∣∣∣∣∣
∥γ̇∥2 + ∥γ̇∥2K 2

γ ∈ L1([b, c],R)
γ(b) = γ0(b),γ(c) = γ0(c)
γ̇(b) ≈ γ̇0(b), γ̇(c) ≈ γ̇0(c)

}
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Lift of an image
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Beyond curve completion: image diffusion
Not working with a single curve but with many level curves.
Consider all possible admissible paths and model the controls by
independent Wiener processes ut and vt obtaining the following
SDE: dxt

dyt
dθt

 =
√

2

cos θt
sin θt

0

 ◦ dut +
√

2β

0
0
1

 ◦ dvt

The diffusion process associated to such SDE is

∂Ψ

∂t
= ∆Ψ

where

∆ = X 2
1 + βX 2

2 =

(
cos θ ∂

∂x
+ sin θ ∂

∂y

)2

+ β ∂2

∂θ2 .
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The Citti-Sarti-Boscain algorithm
1 Smooth the image by convolution with a Gaussian kernel

(guarantees the image is generically a Morse function)

2 Lift R2 → SE(2)

3 Solve the Cauchy problem

∆β = X 2
1 + βX 2

2{
∂tu = ∆βu,
u(0, x , y , θ) = Ĩ(x , y , θ)

over SE(2)

4 Project SE(2) → R2
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Some examples

(a) Original image (b) T = 21 with
β = 0.1

(c) T = 21 with
β = 1

(d) T = 21, β = 10

Figure: An image (a) is processed with the Citti-Sarti-Boscain algorithm for
different values β (b,c,d)
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Problem: no code available

Due to drastic and unfortunate events (allegedly), including but not
limited to

the laptop of the researcher that had the code was stolen
the backup code was lost in a terrible fire

no code from the first paper survived to this day.

A codebase for the Boscain et al. was provided by Francesco Rossi:
MATLAB implementation.

However some work was needed to replicate the results from the
papers.
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Public repository
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Gaussian lift
In the work by Marcelja and Jones and Palmer the similarity in
behavior between simple cells and Gabor filters is studied and
presented. The output of a signal through the filter decays exponentially
as the angle of the original signal differs from θ.
We can model each fiber as a normal distribution around the angle of
the level curve, effectively "spreading" the input signal around the
orientation of maximum response θ of the simple cells following a
Gaussian distribution

Lσ(I) = (I ◦ Π) · exp
(
−(X1(I ◦ Π))2

2σ2|∇I|2

)
=

= (I ◦ Π) · exp
(
−|∇I|2 − (X3(I ◦ Π))2

2σ2|∇I|2

)
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Gaussian lift
Theorem

Define an operator Πσ : C∞(SE(2), (0,1]) → C∞(R2, (0,1]) by

Πσ(̃I)(x , y) = exp

(
1

4σ +
1

2π

∫ 2π

0
ln Ĩ(x , y , θ)dθ

)
.

Then Πσ(Lσ(I)) = I.

Moreover, the original lift can be considered as a limiting case
when σ→ 0.
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How to deal with blur: unsharp filtering

I 7→ I + C(I − I ∗ Gσ)

(a) Original image (b) Blurred image
with σ = 5

(c) Negative of the
blurred image

(d) Sharpened
image with C = 1

Figure: Example of usage of the unsharp filter applied to a low-contrast image
of the surface of the moon
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Vector fields X1, X2, and X3
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(a) Projections to R2 of
the integral lines
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(b) Integral lines of X 2
1 +

2
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(c) Integral lines of X 2
3 +

2
2

Figure: Integral lines of the vector fields X 2
1 + βX 2

2 (red) and X 2
3 + βX 2

2 (green)
for a polynomial curve, at point

( 1
2 ,

1
2

)
, varying the coefficient β.
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Sketch of the idea
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(a) WaxOn
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(b) WaxOff
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(c) Final result

Figure: Sketch of intuition behind WaxOn-WaxOff
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Unsharp filtering on SE(2)/ ∼
The undesired blurring is obtained from the Cauchy problem{

∂tu = ∆βu,
u(0, x , y , θ) = Ĩ(x , y , θ)

∆β = X 2
3 + βX 2

2

(a) Original image (b) R2 unsharp filter (c) SE(2) unsharp filter

Figure: Retinal image (a) sharpened using the classical unsharp filter over R2

(b) and using the proposed sharpening method (c).
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Retinal image enhancement through
unsharp filtering

(a) Original
image

(b) C = 0.5 (c) C = 1 (d) C = 1.5 (e) C = 2

Figure: The original image (a) is processed with diffusion under
∆β = X 2

1 + βX 2
2 and sharpended with varying coefficients C (b,c,d,e)
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WaxOn-WaxOff
WaxOn: diffusion problem with ∆β = X 2

1 + βX 2
2

WaxOff: inverse problem with ∆β = X 2
3 + βX 2

2

(a) Original image (b) X 2
1 + βX 2

2
diffusion

(c) 1 cycle of
WaxOn-WaxOff

(d) 3 cycles of
WaxOn-WaxOff

Figure: From (a) the CSB algorithm is applied to obtain (b). One iteration of
WaxOn-WaxOff for small T2 produces (c) while multiple iterations of
WaxOn-WaxOff are sequentially applied to produce (d). Total diffusion time in
(b) and (d) is the same.
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sR manifold
Definition

A sub-Riemannian manifold is a triplet (M,H, g) with M being a connec-
ted manifold, H ⊂ TM a linear subbundle and g = ⟨·, ·⟩ a fiber-metric
defined on on the subbundle H.

We call H ⊂ TM in this definition the horizontal distribution. A
sub-Riemannian manifold can be considered as a limiting case of a
Riemannian manifold where the distances of vectors outside of H
approach infinity. Curves γ : [a,b] → M with a finite length will then
need to be a horizontal curve: an absolutely continuous curve satisfying
γ̇(t) ∈ Hγ(t) for almost every t . For such a curve, we can define its
length by

length(γ) =
∫ b

a
⟨γ̇(t), γ̇(t)⟩1/2 dt .
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sR distance
We can then also introduce the corresponding sub-Riemannian distance
by

dg(x , y) = inf
{

length(γ) :
γ : [a,b] → M horizontal
γ(a) = x ,γ(b) = y

}
.

In general, there might not be any curve connecting a point x and y ,
meaning that the distance above will be infinite. It is therefore typical to
require the horizontal bundle sub-Riemannian manifold to be
bracket-generating
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Bracket generating distribution

X̂H = span
{
[Xi1 , [Xi2 , [· · · [Xl=1,Xl ]] · · · ]] | Xij ∈ XH, l = 1,2,3, . . . ,

}
,

where we interpret the case l = 1 simply as the vector field Xi1 itself. We
then make the following definition.

Definition

We say that H is bracket-generating if for every x ∈ M,

TxM = {X (x) : X ∈ X̂H}.
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Sub-Laplacian
Consider a second order operator L on a manifold M, which in local
coordinates

L =
n∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
j=1

bj(x)
∂

∂xj
,

with (aij(x)) being positive semi-definite with a constant rank k . Such an
operator can locally be written as L =

∑k
=1 X 2

k + X0. Define a sR
structure on (H,g) on M by making X1, . . . ,Xk into a local orthonormal
basis. If L is required to be symmetric, i.e.

∫
M f1(Lf2)dμ =

∫
M f2(Lf1)dμ

for any pair of smooth functions f1, f2 ∈ C∞
0 (M) of compact support, then

the symmetric operator is unique with respect to a given volume density
dμ. We call this operators the sub-Laplacian of (M,H,g) and dμ.
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Hypoellipticity of ∆β
Theorem

Let L be the sub-Laplacian of a sub-Riemannian structure (M,H,g)
with volume element dμ. Assume that H is bracket-generating. Then
L and the heat operator ∂t − L are hypoelliptic. Furthermore, for the
heat-semigroup etL, we have density

etLf (x) =
∫

M
pt(x , y)f (y)dμ,

where pt(x , y) is a smooth, strickly positive function that is symmetric
in x and y. Furthermore, we have short time asymptotics

lim
t↓0

2t log pt(x , y) = dg(x , y).
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